/' A

~ Copy 'R 6(31 copies

UNCLASSIFIED

S EILE 1o

AD-A182 006

IDA PAPER P-2061

RECOMMENDED SOFTWARE STANDARDS FOR USE BY
THE DEFENSE LOGISTICS AGENCY

David Carney

May 1988

- DOTIC
Prepared for PP i ECTE
N
Defense Logistics Agency { -«
¢ sy N GERP28 1983

e
T Aaoat ham bees
C . s gelwase and iy BB
IR TINCR R lnum‘“ "d

SR
Ll

« E
INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria. Virginia 22311

565 9 2¢ 1223
UNCLASSIFIED IDA Log No. MO 37-032831

f
Y

] L‘.'r.‘ B)
¥ . . P
0 PRI

£

£
pJ

p_—

)
Dt
X
b
h :\ DEFINITIONS
y 10A publishes the following documents to report the resuits of its work.
-l
. Reports
o Raports are the most authoritative and most carefully considersd products IDA publishes.
) ~:.~ They normally smbody resuite of major projects wiich (a2) have a direct bearing on decisions
WO affecting major programs, or (b) address issues of sigaificant concem lo the Executive
N Branch, the Congress and/or the public, or (c) address issues that have significant sconomic

¥
[

implications. {DA Reports are reviewsd by outside panels of experts to ensure their high
quality and reievancs to the problems studied, and they are reieased by the Prasident ot IDA.

.
,'

e Papers
;.-" Papers normaily address relatively restricted technical or poiicy issuss. They communicate
" the results of special analyses, interim reports or phases of a task, ad hoc or quick reaction
o work. Pspers are reviswed (o snsure that they meet standards similar to those expected of
Y j referesd papers in professional journals.
®. Memorandum Reports
. IDA Memorandem Reports are used for the convenlence of the sponsors or the analysts to

o

Y record substantive work done in quick reaction studies and major Interactive technical support
. activities; to make avsilable preliminary and tentative results of analyses or of working
growp and pans) activities; to lorward information that is essentially unanalyzed and unevai-
uated; or to maks a record of confersnces, meetings, or briefings, or of data develoged in
the course of an Investigation. Review of Memorandum Reporis s sufted to their content

[TN SO S My |
.')'y'v'l ’
P

Uil

r and intended uss.
; \-':. The results of DA work are also conveysd by briefings and informal memoranda to sponsars
A and others designated by thy sponsors, when appropriats.
k™ e
; :J’.‘,
v
bt The work reported (n this document was conducted under contract MDA 903 84 C 0031 for
/\\ the Degartment of Defense. The publication of this IDA documesnt doss not indicate sndorss-
’ ment by the Department of Defense, nor should the contents be construed as reflecting the
N official position of that agency.
o~ This paper has been raviewsd by (DA to assurs that it masts high standards of thoroughness,
objectivity, and sound analytical methodoiogy and that the conclusions stem from the
° methodology.
LJ ‘J .
u
Ty
AS¢ Approved for public relesse; distribution unlimited.
hYAS
o~
\‘::
S
o
'
s
0
>,
! :. -
3 -‘(
v v
L4
@
N
o

O

‘e

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1la REPORT SECURITY CLASSIFICATION
Unclassified

1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Public release/unlimited distribution.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-2061
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a NAME OF MONITORING ORGANIZATION
Institute for Defense Analyses IDA OUSDA, DIMO
6¢ ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)
1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311
8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
Defense Logistics Agency DLA MDA 903 84 C 0031

8¢ ADDRESS (City, State, and Zip Code)
DLA-ZWS, 3A636

Cameron Station, Alexandria, VA 22304-6100

10 SOURCE OF FUNDING NUMBERS

PROGRAM | PROJECT[TASK
ELEMF NTNOJ NO. No.
T-T5

WORK UNIT
ACCESSION NO.

-423

11 TITLE (Include Security Clnulncxﬁ.o-n)

Recommended Software Standards for Use by the Defense Logistics Agency (U)

12 PERSONAL AUTHOR(S)
David Carney

13a TYPE OF REPORT _ |13b TIME COVERED
Fina] FROM TO

1988 May

14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

42

16 SUPPLEMENTARY NOTATION

17 COSATI CODES
FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Software standards; Ada programming language; software configuration
management (SCM); portability; coding standards; prototyping.

described in Section 3.

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this IDA Paper is to recommend a set of software standards for use by the Defense
Logistics Agency. These recommendations are related to the effort by the DLA to evaluate the Ada
progamming language as an Agency standard. The recommendations cover three areas of software
development: software configuration management (SCM), portability of Ada programs, and Ada coding
standards. Although the principal scope of this paper is that of software standards and their potential use
by the DLA, many of its recommendations, principally those concerning coding standards and portability,
are derived from lessons learned during the earliest stages of the DLA Ada Prototype Project, which is

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

E UNCLASSIFIED/UNLIMITED (] SAME AS RPT. (] DTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unciassified

22a NAME OF RESPONSIBLE INDIVIDUAL
Audrey A. Hook

22b TELEPHONE (Include area code)
(703) 824-5501

22c OFFICE SYMBOL
IDA/CSED

DD FORM 1473, 84 MAR

PR S IR P S ¥

Tl -"‘_. v

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

e e e N e, -,. -\. -s -.'-A"‘ A “-s. 1.“ ‘W"\'ﬁ"i *‘.'x x"'-‘ .

Unclassified

" UNCLASSIFIED

(@

' IDA PAPER P-2061

o

D)

K «

) RECOMMENDED SOFTWARE STANDARDS FOR USE BY

3 THE DEFENSE LOGISTICS AGENCY

(M

i

A

!

: David Carmey

s [

E

May 1988 Accession For

K- NTIS GRA&I g

* DTIC TAB

A Unannounced O

A Justification |
o By.

V. __D}rstribution/ o

! Availability Codses

’ T avail and/orw—‘
: Dist | GSpeclal

’ |

L

: . Al
b I1DA
- INSTITUTE FOR DEFENSE ANALYSES

: Contract MDA 903 84 C 0031

g Task T-T5-423
5 UNCLASSIFIED

-y R . T
./ -'\J‘ﬁf,‘-l‘,’{‘\-(e X P IJ; LN

e
X

o
b
)
p UNCLASSIFIED
L g
* CONTENTS
K
;: 1. INTRODUCTION . 1
1.1PURPOSE ¢« v v v v v v e v v e e W 1
4 12SCOPE . . & ¢ v v v v i e e e e e e e e e e 1
@ 1.3 BACKGROUND 2
’ 1.4 APPROACH 3
2. FINDINGS AND CONCLUSIONS 5
) 2.1 SOFTWARE CONFIGURATION MANAGEMENT e e e e e e e e e 5
; 211 Discussion ¢ 4 4 4 e 4 4 4 e 4 e 4 e e e « « 5
ﬁ 212 Conclusions 0t et e e e e e e e e 6
22 PORTABILITY . . & vt ¢ e ¢ v v o« o o o o o @ 6
| 2.2.1 Discussion . . e e e 7
D 222 Conclusions . « .+ . 4 4 e 4 e e e e e e e . 7
) 2.3 CODING STANDARDS e e e e e e e e e e e, 8
231 DIiSCUSSION « . ¢« ¢ ¢ v 4 e e e e e e e e e e e e e 8
7 2.3.2 Conclusions 8
3. RECOMMENDATIONS . . . R §
3.1 SOFTWARE CONFIGURATIONMANAGEMENT O & |
| 32 PORTABILITY . . &t &t ¢ v e v v e e e e e e e e e e e e v 12
33 CODINGSTANDARDS . . & & ¢ v ¢ v v 4 v o o « o« o « « . 16
! @ 3.3.1 NamingConventions « + « « « « & & « « + . 16
3.3.2 PackagingConventions « + « « 4 « « o o . 22
X 3.3.3 Other Coding Conventions « « + « « « « « « . 25
N 4. SUMMARY .« « « v v v e e e e e e e e e e e s s
)
[}
[
L
A
'
[]
)
o’
J
df,
.1
o
.
.
Y
! -
3 UNCLASSIFIED
;"-\."'-."-'.’ P "'-s"-s'." Ny »"’ A -Cj‘,'-’ ';"’ ALt _h"-' e '*‘-';-Z’-'j-"-" o '~.:'.-f;:-:;:-l'~:’ -Z“»"’-Cn_:—"-l i“"{"\"’ e '-'-:'i ~ (

)
.". i
N
W
:' 3 UNCLASSIFIED
-
)
)
4 € PREFACE
AN
B
i
?
! The purpose of IDA Paper P-2061, Recommended Software Standards for Use by the Defense
‘s
R ¥
_ Logistics Agency, is to make available the findings and conclusions reached during the
.
- preliminary stages of IDA task T-T5-423, Defense Logistics Information System. These findings

-
[t 3

and conclusions take the form of recommendations in three areas of software development:

ﬂ,«v
e

software configuration management (SCM), portability, and coding standards.

Sy

Reviewers of this document included: Bill Brykczynski, Audrey Hook, Joseph Linn,

Katydean Price, Robert Winner, and James Wolfe.

e
(b o gl LS

) albolulag bl

'; “-,'- L RAY

Pud

IR AL AT

BNV AR @

UNCLASSIFIED

-
.

B, W

Y LN) q L4 LAY T, "
. '\P‘.r"""“ ._,.\ ._; -.\;.J_ R xL.‘_ - .~-_~"4«

"""" LRI A DL - -
,; f'/ e A T '.-_:uv?v;: \- ".} .(-"'-a‘-(':' . "

1. INTRODUCTION

1.1 PURPOSE

The purpose of this paper is to recommend a set of software standards for use by the
Defense Logistics Agency. These recommendations are related to the effort by DLA to

evaluate the Ada programming language as an Agency standard.

1.2 SCOPE

These rccommendations cover three areas of software development: software
configuration management (SCM), portability of Ada programs, and Ada coding standards.
Recommendations in the first area are independent of any particular programming language.
The second area is one in which few standards have yet found widespread acceptance, and
the recommendations are only of a very general nature. The third area, Ada coding
standards, includes such issues as naming conventions, appropriate and inappropriate

statement types, and packaging conventions.

Although the principal scope of this paper is that of software standards and their
potential use by DLA, many of its recommendations, principally those concerning coding
standards and portability, are derived from lessons learned during the earliest stages of the
DLA Ada Prototype Project described in Section 3. Among these experiences were the
attempt to erect a workbench of Ada tools and the on-going experiences gained from several
intensive Ada training sessions. The workbench experience is documented in IDA
Memorandum M-387, Compiling and Porting the NOSC Tools for Use by the Defense

Logistics Agency.

1
UNCLASSIFIED

- e ;
. S
"v"-{"-"‘\,‘- e

)

5L 5 %0

@ Sy,

-
n'-‘n_\\ﬂ

'@

[SO I G R

LY

¥
by

.l. "t "
SN

o
LN

[N
MRE R AT
W e

"4
2
~ .

peeeet®

A At N N e T T NN S
e .r.r.r.'.a./-.fﬁ;“-...s

UNCLASSIFIED

1.3 BACKGROUND

The Defense Logistics Agency is engaged in a long-term program, the Logistics Systems
Modernization Program (LSMP), to modernize its Automated Information Systems. A
principal thrust of the LSMP is to determine the feasibility of using the Ada language in DLA

applications.

To that end, IDA and DLA are engaged in an Ada Prototype Prcjcci. This project
involves the creation of a preliminary Ada Programming Support Environment, training a
group of DLA programmers in the use of Ada, and the writing of large-scale software
projects to demonstrate Ada’s capabilities. The functional nature of these demons rations
will be similar to that of the COBOL software currently in use at DLA. Since the project will
be distributed through three different machine tiers, an IBM, a Gould, and several Zenith

PCs, it will also demonstrate Ada’s capacity for portability of software.

One principal requirement for the Prototype Project is an Ada Programming Support
Environment (APSE). The APSE is a “workbench” of Ada tools which can later be

expanded and modified as the modernization project itself is expanded and modified.

In IDA Memorandum Report M-294, Ada Prototype Project, it was recommended that
tools for the APSE be acquired by first examining public domain software before resorting to
commercially available software. .A major source of public domain software is the
SIMTEL20 Repository, which contains a large number of available Ada programs. Many of
these were selected for potential inclusion in the DLA APSE. Since these tools were

commissioned by the Naval Ocean Systems Center, they are commonly referred to as the

NOSC tools.

2
UNCLASSIFIED

‘\-"\.‘v"'\

} UNCLASSIFIED

: A team of DLA personnel was selected for training in Ada. Their collective expertise is
in COBOL, C, and Pascal, and most of the members are proficient in traditional Automated

. Data Processing methodology. In addition, two of the team members have considerable

backgrounds in systems programming.

The team received six weeks of intensive training in Ada. The classes were given by
personnel from TeleSoft, Inc., whose compiler will be used during the Prototype Project and

. beyond. The textbooks for this course were:
y o Software Engineering with Ada, Booch
: o Reusable Software Components with Ada, Booch

o Understanding Concurrency in Ada, Kenneth Shumate

v 1.3 APPROACH

There are three different categories of recommendations in this paper, and they derive

[from numerous sources:

. e The trials of erecting the APSE, and the insurmountable difficuity of porting much of
it to DLA, were the sources of many of the recommendations concerning

configuration management and portability.

- o Observing the DLA team’s training sessions provided valuable insight into the the
- type of coding standards and guidelines needed. In addition, many experiences of

- the authors of some NOSC tools provided other coding recommendations.

¢ Finally, general experiences gained in using other Ada environments contributed to

some of the recommendations in all categories.

3
. UNCLASSIFIED

T .-_-_ “p = Ay W e PR AR - Y
Ay 1.:.'\.‘ . *.:,-.”'. V&"\"\" ”, ') J"&"\-" *"\."P "“ O J‘H.""‘\"' "\"lw."'\. 'si-\"- ~ \. w. '. _~,. -s"- "\."'- ~ \."\" *."*."- A -."" ."-s‘tx -. \"'
'y ~ & A B - 4)

9 UNCLASSIYIED

‘ Section Two of this paper presents findings and conclusions based on these experiences.

) Section Three presents recommendations and provides a rationale for each recommendation.

w7

Ay

b

e

P Y N R

2

" 4
. UNCLASSIFIED

S ~at Al PV
7, .r f:.f.r.r.rz .{'-‘J’-l‘f..(u-"-ﬁ.f‘l

ALY & S

- o

e O

P A -

)

WY PO VRN

UNCLASSIFIED

2. FINDINGS AND CONCLUSIONS

Findings in the three areas of SCM, portability, and coding standards are discussed, and

conclusions in each area are presented.
2.1 SOFTWARE CONFIGURATION MANAGEMENT

Finding 1. Many of the NOSC tools chosen for the DLA APSE exist in multiple and incompatible

versions. This principally applies to the large tools.

Finding 2. The software environment at DLA presently has few tools to aid or enforce SCM.
Erection of a dependabie system will substantially impact the success of the entire Ada prototype

project.

Finding 3. Major components of the SCM system at DL A will need to include controls for multiple
versions of source files, mechanisms for standardized software releases, and management of

released object code.

2.1.1 Discussion

Of the problems encountered in compiling the NOSC tools, those stemming from poor
SCM were the most difficult to solve. Principally, there were variant versions of many
packages, due to the fact that the SIMTEL20 sources reflect multiple releases of the tools.
The variants existed at different levels of software: some packages had been subsumed into
other packages, creating inconsistent dependencies. Others merely reflected earlier and
later versions of the same package. These difficulties were especially prominent in large tools

comprising many source files.

These problems were overcome with difficulty. It is noteworthy that IDA also had

available another version of some NOSC tools, obtained through GTE. While this other

S
UNCLASSIFIED

Az
W s Y
P 3o e
S

)
3

{II.
l_’l.

YR R

£ LY,

- —ﬂp‘ 1

-

P
AN
ARV RS

:

-

P
X
e

- .
LI

: Y
Pty

o,

AN
: AARA ot

CANS

- &
«

oy

e
A

LR

UNCLASSIFIED

source of the tools added some confusion, it was only from the GTE versions that the needed

versions of some packages were found.

2.1.2 Conclusions

For a software project of any substance, there is need for a dependable SCM system.
Given the nature of Ada, where a basic intention is to achieve a high degree of modularity,
effective SCM is even more crucial. An acceptable SCM system will minimally contain a set
of protocols and standards for version and revision control, as well as a means to map the
correct version of source code to the object code. An acceptable SCM system will also

contain a reliable mechanism for tracking and documenting releases.

Additionally, an Ada project will need a mechanism that governs compilation of several
files. This entails determining the correct order of compilation as well as performing the

actual invocation of the compiler.
2.2 PORTABILITY

Finding 4. The NOSC toolset contains several tools that were written with non-validated compilers.

These tools will not compile with a valid compiler.

Finding 5. The majority of the tools examined contained system-dependent code. In the larger tools,
the dependencies were often dispersed through several packages, making them highly difficult to

port to other systems.

Finding 6. Even with these dependencies removed, the large NOSC tools could not be compiled
using the Gould compiler at DLA. One of the tools was eventually compiled by a considerable

reworking of the sources. The executable that was created failed in elaboration.

6
UNCLASSIFIED

UNCLASSIFIED

2.2.1 Discussion

Of the PC-based tools examined, half have been successfully ported to DLA; of the
mainframe-sized tools, none. In the case of the failing PC-based tools a major cause was
poor or illegal code, due to use of non-validated compilers as development environments. In
the case of the mainframe-sized tools, it was due partially to overreliance on VAX{ system
calls, and especially to a capacity limitation of the DLA Gould compiler. The attempt to
compile the NOSC tools is discussed in detail in IDA Mcmorandum Report M-387,

Compiling and Porting the NOSC Tools for use by the Defense Logistics Agency.

2.2.2 Conclusions

It is generally misleading to speak of truly “portabie” code; such software is relatively
rare. The term ‘“‘portable” more often refers to code that needs only a small amount of
alteration in order to compile on different machines; portability is thus a measurement of
such alteration. Code which has a high degree of is a portability is code wherein the needed
alterations are easily made. Conversely, non-portable code requires complicated alterations,
or is written in such a way that the location where alterations are needed is not easily

determined.

It is also apparent that portability may be an issue over which the programmer has little
or no control. In the case of the NOSC tools, even though the Gould computer is a reasonably
large machine, its compiler was not able to compile code that had compiled without probiem

on a VAX.

+ VAX s aregistered trademark of Digital Equipment Corporation.

7
UNCLASSIFIED

- - -
PR T T
A R W
e n " .
et .,

L

R S e
Wt
ALY

oy

RS

X T

«
» %2 e
'

UNCLASSIFIED

> s s
.2

PP
P L
PN

Since one of the stated goals in the DLA Ada project is achieving software portability

= P

:_.E through three machine tiers, this issue is fundamental; it is one of the prime points that the
“:: project is meant to demonstrate. The DLA team must obviously regard portability as an
. element that must be present at the earliest level of design, and not, as in the NOSC tools, as
E.F a consideration after the code has been written. They should also be aware of the limitations
ey

»-:‘:;: of their compiler, and should be urged to design their code accordingly.

s
&
«’

12

2.3 CODING STANDARDS

-
ate
‘_:'5‘_‘ Finding 7. The coding standard found in the course’s textbooks represents only one possible
N
;) standard for good Ada code.
'::{
f jt 2.3.1 Discussion
N
4 Most of the DLA team members came to Ada from backgrounds in COBOL, and have
A
e need of guidelines in writing Ada code. While the definition of an “Ada style” is, to some
j‘,:: extent, a matter of opinion, there is is a genuine need for some practical guidance in this
=
et area.
™
LA . . .
a0 At the present, the primary models available to the team members derive from the texts
o
- used in the training sessions. In addition, the code for the NOSC tools provide a wide range
‘° of code quality and conventions. The code in the textbooks represents a particular kind of
2
": coding style. This style is discussed in detail in Section Three. The code in the NOSC tools
- ranged from unacceptable to excellent; the experiences of some of the NOSC tool authors
o
, . provided a source for some of the recommendations made later in this paper.
o
-5 2.3.2 Conclusions
e
o One of the fundamental aims of the Ada language is the writing of maintainable,
S
.
.
=2
i _'J
¥ _:, 8
2 UNCLASSIFIED
e
L
o

l‘ "
o

'w oo

UNCLASSIFIED

I,
. o | |
$ reusable code. As a means toward that end, it is vital that code be easily readable: in one
. sense, readability is the hallmark of well-crafted code. Readability in this sense does not
) refer to documentation, but rather to the actual compilable code. In particular, coding
R
r practices that favor dense, abbreviated code are to be avoided.
.
p
Coding conventions are, in themselves, major contributors to code readability. Also,
L since Ada usually involves simultaneous references to multiple source files, any coding
}
! conventions that simplify these references are beneficial; any that hamper it are poor.
N
4
L
L.
(L 4
)
!
3
¥
2
) .
A
b
{
o
[}
‘
p,
[
\
"
‘t

, 9
S UNCLASSIFIED

'._‘- e TR L PR R Bars e e -'.'\\"\' ») " - W I~ L LR
NI .-_f o _.-\J-_.._ AN '_.,.-_. .-.r__._,..r,,’. ,_.r_ .‘\- _'. -\."'-. N 7 ,*-(‘\.‘ 5."" ,-,' .r,\ W o .~.. :. '*‘.\ N '\(5--‘

h'5,0°8,0'8, * ¢

AN

ALSRLON
“. \ \.’- *\‘ * ‘
N e, L) ()

..
.L“-_‘& R

e
N

UNCLASSIFIED
10
UNCLASSIFIED

P
'

0 o
N

b
.

.n..‘

-- - x_®_» P . S A R [y ~y By, PR .-.a 't .. Y vr .\\\.-‘
O...MJ..M.W.‘ CErt Al MM SR ISR Rl ¥ (N5 .,mfx......onx............ @ @ i @

e et A AN - o T N - " N P !

-

N N

eV et e .

UNCLASSIFIED

3. RECOMMENDATIONS

There are three categories of recommendations: software configuration management
(SCM), portability, and coding standards. Five recommendations for SCM, four

recommendations for portability, and fifteen recommendations for coding standards are

presented.
3.1 SOFTWARE CONFIGURATION MANAGEMENT

1. Since the Gould computer will be the major development area, configuration management

protocols should be governed by the UNIX® operating system.

The eventual disposition of the Ada project through the three architectural tiers is not yet
determined. It is clear, however, that the Gould, using the UNIX operating system, will be
central to the project. UNIX also provides a foundation of language-independent tools that

partially offset the current absence of a true APSE.

2. The DLA team should be encouraged to use available SCM tools at every stage of the Ada

project.

There are existing tools that have proven beneficial to SCM. UNIX’s make and RCS
utilities are examples of them. (make is a tool that automates compilation of large systems,
and RCS is a revision control system for controlling changes to text files.) In addition to
encouraging use of tools such as these, other tools, such as mechanisms that automatically
generate makefiles, or that facilitate using RCS, should aiso be developed. Implementation

of these mechanisms has already begun.

3. A mechanism to permit orderly release of source files and executables should be developed.

The notion of “releasing’ software is present when there are several programmers working

on interrelated code. There must be an orderly process that allows tested software to be

11
UNCLASSIFIED

\

l'-.'4l - » .. *
L W PR e o
g - -

.
R .r‘".r"f".r e
"y "

AL) e e w'\ L] LR}
-,K,' f"\ -, -, > -\'-. ’."\,-". '» " " . " J'.g'V-‘.' "r "*“-"‘\

- KPRt

I's

4 A D)
-.z“ -

- . -
by £, Pk)

2 B w)

Rl At B A

[t e D Y

L

rara®

-

e

'I

UNCLASSIFIED

used by others, but that permits a programmer continually to improve it. Such a process
depends on many factors: the released version of the source must be accessible; the
compiled code must be stored in a safe location, so that other users who rely on it can do so
indefinitely; and the mechanism whereby a release is made must be easily invoked so that it

will be used often.
4. A mechanism that tracks and documents releases should be developed.

The need for tracking releases is vital. It is often necessary, for instance, to rescind an
erroneous release, a process that involves reconstruction of an earlier configuration of the
system. Without a tracking mechanism, reconstruction of any particular system

configuration is likely to be impossible.

wn

SCM standards for the DLA project should be adhered to by all team members without

exceplion.

Though notional agreement with this recommendation is probably near universal,
experience has shown that SCM standards are those that are followed the least. Experience
has also shown that lapses in this area are the most damaging. There are, for instance, costs
that can propagate far beyond the awareness of the developers. This point is amply

demonstrated by the NOSC tool experience.

One guideline for DLA in selecting its SCM standards is the ANSI/IEEE Std 828-1983,
Software Configuration Management Plans. It is recommended that the DLA team

investigate this document before making any specific decisions in the area of SCM.
3.2 PORTABILITY

1. For each given program, all system interface should be isolated in a single package.

12
UNCLASSIFIED

T R A e e N et e N RN St L L LA
" .INJ' ! 2 &.'J.\K' A Lok l ‘).-' O n n NN ‘ J‘

(ol a0t MR AL ML L e [I\ [o

TrwT . Y

NN

,

b, ‘:"0

UNCLASSIFIED

Software must communicate to the native operating system. In the case of code written for the
DEC Ada compiler, for instance, system calls are invoked through a package STARLET,
supplied by DEC. On UNIX systems, Pragma Interface(C) or Pragma Interface (UNIX)

perform similar roles.

Making such software portable involves isolating this communication in a single location. If the
@ system-dependent code is distributed throughout several packages, then the code will port to

H another machine only with difficulty.

When the software under consideration involves two or more executables, it is further

PO

recommended that each have a separate interface package. This will help avoid a situation

- .

N encountered in the NOSC tools, where a system interface package was used by several
executables. The interface was changed for some, but not all of the executables, resulting in an
L untenable set of package dependencies. Using a separate package for each executabie ensures

o a necessary independence of executable programs.

- -

2. Reliance on constants that are system-dependent should be avoided.

Constants such as those found in package System concern capacities of the host compiler, such
as the degree of precision in real numbers. If code depends on a factor like this, then that code

\ is not really portable.

The following code will compile with the DEC Ada compiler, but will fail with some others:

. package Real_Numbers is

,‘ type Big is digits 15;

: — This will fail uniess the

¢ — value of System.Max_Digits
; — is at least 15

» 13
- UNCLASSIFIED

} 1\ .4 "'\}\‘VN.‘:"\;'\('\:"-; L] .‘;\.;-‘i-‘:;n‘:;":&;.;'l-h ’N._" \.“-.w.- S‘l ,.‘3":)* -‘\.f‘.:;,"y\‘\,.'.'.::".r‘ .s-f“ "V' »\& LR - .,A . ‘ \' -
ok 8, iy (0 L ™ Ny e WSy (A% A LM Ly LN L WAt \" O AN M d R M MM e N MY

cw oy,

L)
-
Ll

5.

S

L4

r

« e e

i)

L=

BILE ARt A

- oy, -
Zet N

A

v

@ L]
. . P A]

e ot
&

L e e = oo o
e
L A

a xw
&t

‘ » IE' :‘“l ".’r

T

UNCLASSIFIED

One possible alternative is:

with System;
package Real_Numbers is

type Big is digits System.Max_Digits;

But this solution is invalid if there is genuine need for the greater precision. In that case,

however, the code will always be erroneous on a smaller machine, and is not portable at all.

By contrast, the following code involves constants from package System, but does not depend

on any particular values for them:

with Text_IO;
procedure Numbers is
package TIO renames Text_IO;
max_size : constant Integer := (Integer’width) - 2;
number : Integer;
dummy : String (1 .. 100);
len :Natural;

— this code will work regardless of
-- the actual size of Max_Int.
begin
TIO.Get_Line (dummy, len);
if len <= max_size then
number := Integer(dummy(1..len));
else

TIO.Put_line (“Input value too large”);

Excepting generics, source files should contain a single compilation unit. In the case of generics,

source files should contain precisely one generic specification and one generic body.

When a source file contains more than one compilation unit and one of the units fails in

14
UNCLASSIFIED

e - T T T S T,
. ."‘" -.\'-." "-"-.-."' e ’-"-\. ~- ‘:' Tl

” 2 e . » 5“ .a'h .|.o'0 c't.t) f' Y

UNCLASSIFIED
e
n compilation, different compilers will behave differently. One possibility is for the compiler to
‘
o reject the entire compilation; that strategy is used by the Gould compiler. If the source file is
.: very long, with numerous compilation units, and the failure occurs at the very end of the
]
. compilation, the wasted time can be considerable.
"
Y As a single exception to this recommendation, the Ada Language Reference Manual
$. (ANSI/MIL-STD 1815A) permits an implementation to require generic specifications and
: bodies to share the same source file. Since the Gould compiler makes this requirement, then

generic compilation units should be the only occasion when one source file contains more than

one compilation unit. In such cases, the source file should contain no more than two units.

4. Large arrays, those larger than 1000 elements, should be initialized by slice assignments and not

by a single aggregate assignment. If possible, such data structures should be avoided.

.", gy R -
S PP AT SN -

This recommendation stems from the principal reason that the large NOSC tools could not

y successfully compile at DLA. Several packages in the tools were automatically generated code,
i@
s containing large aggregates of integers. These aggregates were initiaiized by a single assignment
| ® statement. In all cases, these packages failed to compile at DLA.
! The solution in this case was to break the large aggregate assignment into smaller slice
- assignment. Thereafter, one such package was successfully compiled. But the executable that
¢ . - .
« was generated failed, and it is has not been determined whether the tools can be brought to
L3
Y
- successful execution under any conditions.
M It seems a safer course to recommend that the Ada style in packaging, i.e., small, modular
q
& packages, be brought to bear on data structures as well. Otherwise, as in the NOSC tools, code
K
D

can be created which will compile successfully on one compiler and not on another, and there

may be no possible way to port it because of capacity limitations.

NN e
Y. A
.

&L

™ 15

P UNCLASSIFIED !
2y
V/ : .

- T N A R LG
. AL AR

AN R AT RS R R LR R S LR AR AR T TR ARG
‘ N i A A e M iy Seaangs \‘\'\\‘\\!.x

UNCLASSIFIED

3.3 CODING STANDARDS

This section contains recommendations about naming conventions, packaging

conventions, and other coding conventions.
3.3.1 Naming Conventions

1. The naming conventions that are established should be consistent throughout the entire

project, and used by all members.

This point is self-explanatory, but can not be overemphasized. Even if all of the following
recommendations are rejected, there is need for consistent naming conventions across the

project.
2. Whenever practical, use descriptive prefixes for subprograms, especially functions.

Subprograms are generally entities that “‘do”” things, and the precise nature of what is done
should be clear from the subprogram’s name. Prefixes like “Is_”, “To_”, “From_”,

“Has_” and similar others, can provide this clarity:

“Is_”
— for a function that returns a boolean
~ result from making an identity test.
‘(Has 1"
— for a function that returns a boolean
— result from making an attribute test.
“From_",
“To "

- for a function that converts a value into

another value. The **From” prefix describes

the precondition of the function; the “To_"
prefix describes the postcondition. The choice
is dependent upon the function’s principal work.

16
UNCLASSIFIED

«Co¥ala

o -

X UNCLASSIFIED

While these prefixes deal with functions only, parallel examples for procedures are easily

imagined. As an example of the value of descriptive names, consider the lack of clarity in

v the following specifications:

K &

-

. function Lower_Case (item : Character) return Character;
' — This function returns a lower case character
: — from an upper case character.
| &

function Lower (item : Character) return Boolean;
— This function returns true if a character is

: : — in lower case.
[)
; ! [. .
. These might typically be used as follows:
D
-
. ¢ : Character :=‘Z’;
i @ begin
if not Lower(c) then --??lower than what??
[¢ := Lower_Case (c);
. .
' A preferable, though more verbose, alternative is both self-documenting and consistent:
N
"
Y function To_Lower_Case (item : Character) return Character;
¢ function Is_Lower_Case (item : Character) return Boolean;
.
. ¢ : Character :="2’;
. begin
4
. — conventional use of “is_”
X — indicates a Boolean test
[if not Is_Lower_Case(c) then
- ¢ := To_Lower_Case (c);
q

17
UNCLASSIFIED

R e T T UL P S W R N N %
" .._-:.‘-_\-(‘.g PR R I‘\" -.“

L AL N Wl

h Al A

i
)

AT

i

o

M

.w

3
. L

)

-

R N R

..
AP A

L Sk |
[B T ¥
ER

.\"' L

A @ Sttt

e

“ 54
LR R R §

»

e
a_-.l'&.f
AT AT,

UNCLASSIFIED

Finally, if the appearance of “... not Is_Lower_Case” is offensive, then the following

addition:

function Is_Upper_Case (item : Character) return Boolean;

leads to:

if Is_Upper..Case(c) then
¢ := To_Lower_Case (c);

Abbreviations should not be used in subprogram names. Wherever practical, subprogram

names should be entirely self-documenting.
The semantic content of abbreviations is a highly subjective matter. While such
specifications as:
procedure Val (item : Item_Type);
will probably connote ““Value” to most people, it is quite possible that

function Mat_mpy (mat_1, mat_2 : Mat_Type) return Mat_Type;

will not be meaningful except to its author. Changing this to

function Matrix_Multiply (
matrix_1,
matrix_2 : Matrix_Type) return Matrix_Type;

results in a considerable increase in readability.
Naming conventions should be chosen so as to avoid unreadable code.

There are many viewpoints on good naming conventions, especially as regards names of

types and objects. The DLA Ada team used texts by Booch and Shumate. Particularly in

18
UNCLASSIFIED

R R P N e N e N L
P A I,\'-f,.-'_'::\- ‘e, N

Aads 2 . AL

s 2 88 2 88 dan 7.

UNCLASSIFIED

reference to the Booch texts, the DLA team should be made aware of some different points

LY

of view.

There are several objections that can be made to the Booch style. First, since all objects
begin with the four characters ‘““The_”, there is an unwelcome element of sameness to each
object. And if there are several objects being manipulated in the code, or several fields of
the same record object, the result can be extremely awkward to read. The following is an

example:

if The_Ring.The_Back = 0 then
raise Underflow;

elsif The_Ring.The_Back = 1 then
The_Ring.The_Top :=0;
The_Ring.The_Back :=0;
The_Ring.The_Mark :=0;

else
The_Ring.The_Items(The_Ring.The_Top..The_Ring.The_Back-1):=
The_Ring.The_Items(The_Ring.The_Top + 1)..The_Ring.The_Back);
The_Ring.The _Back := The_Ring.The_Back - 1;
if The_Ring.The_Mark > The_Ring.The_Top then

The_Ring.The_Mark := The_Ring.The_Mark - 1;
end if;

{Booch, p.185)

Another weakness in the above convention is that when two objects of the same type are
used, they are distinguished by prepositions, commonly “To” and “From”. But the use of

these is incorrect as regards common English meaning. As an example:

for Index in From_The_Map.The_Items’Range loop
if From_The_Map.The_Items(Index).The_State = Bound then
Find (From_The_Map.The_Items(Index).The_Domain,
To_The_Map, The_Bucket);
(Booch, p.230)

19
UNCLASSIFIED

- . T te o Te - e T LT . ST G- Ta e Te T Y LT Te e e e T ~
R R IAT AT IR T R e e AP e ~ SRS e _-.“.. R Ce e e
. o Te > e e -

~ AT T T LT TS
R A R Sl S "-»."\".x:_x N

A - - -

)

- e - - _an - [y " A Bal el Aok ok i aos aed Ans ot aad ks g T T

N
T~
e
e
- UNCLASSIFIED
o
-
-.ﬁ:
The intended meaning here is to distinguish between a *“to” map and a *“‘from’ map, one a
LY
: source and one a destiuation. But in simple English, using *‘...to the x...from the x...”
r.'?-
commonly refers to the same “x”. To be consistent with English ...aze, it would need to
B read: “The_To_Map ... The_From_Map”’, at which point common sense rebels.
<
!
oy 5. Wherever practical, use descriptive suffixes to denote common data types.

It is undoubtedly a good practice to separate type names from variable names; that is an

LI L
: ‘ AL

obvious intent of the conventions discussed in Recommendation 4. But a better way to

:::-: achieve that goal is to place a descriptive suffix on the type, rather than an article on each
A
{-.' > .
- variable. By using such suffixes as:
®
- “_ptr”’ ~ for access types.
- “_rec” - forrecord types.
) \: “_arr” ~ for array types.
“_type” - for enumeration types.
‘-
o
[
Ju
o the following code:
A
» .':
)
- type Colo: _Type is (red, white, blue);
P type Color_Ptr is access Color_Type;
- color : Color_ftr;
-:'_‘. s
° color := new Color_Type’(red);
>t if color.all /= blue then
i
will be both clear and succinct. It should be noted that using abbreviated suffixes on types,
[J
::-‘; unlike abbreviations for the nouns or verbs in subprogram names (cf. Recommendation 3) is
::-f: an acceptable practice, since suffixes indicate only typical data types such as arrays,
records, and pointers.
b -.['
b .
Ol
o~
i 20
UNCLASSIFIED
L

o
]

" ‘. 1

e

T m A

atwialatn T,

v
Y 3

-y

PLIS P Y

UNCLASSIFIED

Use simple names (without prefix or suffix) to denote variables.

Generally, type names are used once, variables names several times. The descriptive prefix
or suffix should be used at the point where the type needs to be discerned, nowhere else. Of

the following two examples, the first is preferable:

type Node;
type Node_Ptr is access Node;
type Queue_Rec is
record
Front : Node_Ptr;
Back : Node_Ptr;
end record;

procedure Copy (
From : in Queue_Rec;
To :inout Queue_Rec)is

if From.Front = null then
To.Front := null;
To.Back := null;

21
UNCLASSIFIED
e N T -.,,-4 oS ’ﬂf\ "s.'-s'."'a ?\v_/u', .. ' ‘; —"'-.__,- Tl .:.h

\
<4
N
A
. .
[
AN UNCLASSIFIED
B .:\
R
"
N
i '*3 type Node;
K 53 type Structure is access Node;
N type Queue is
Y _.::, record
g The_Front : Structure;
v The_Back : Structure;
,,:, end record;
B £
F g
S
i
N
B procedure Copy (
’(=~ From_The_Queue : in Queue;
_ To_The_Queue :in out Queue) is
-
N
sl "-4' aee
N if From_The_Queue.The_Front = null then

v

L4
O To_The_Queue.The_Front := null;
n! To_The_Queue.The_Back := null;

L]
[y
a
.

22
- UNCLASSIFIED

N (Booch, p.149)
D)
0 3.3.2 Packaging Conventions
o
| n
(1. Subprograms, whether funcrions or procedure, should be brief; each should accomplish a
LT
B, <
; ,:j single action.
3 A'.‘
B :‘f
g One of the hallmarks of the Ada style is a high degree of modularization, with the
2 . : : .
~ restriction of a subprogram to a single action. The benefits of this are twofold: first, since
. *\‘)
X J.:: the subprogram has only one effect, it can subsequently be reused in a variety of contexts.
U
K :: Second, the code of such a subprogram will necessarily prevent the dense, unmanageable
o
e, code that Ada was intended to avoid.
’,
el
e As a simple means to achieve this goal, it is further recommended that a typical subprogram
fum_ "
J _‘,—
».'-" be restricted to a very few lines of .code. An upward limit is difficult to determine, but a
':'.::' subprogram that is larger than fifty lines is probably too long.
::.':: Some subprograms will perforce violate this recommendation; sometimes such things as a
’ very lengthy case statement are the best solution to a particular problem. But in the general
g
S
.-\o

NN A,
N

UNCLASSIFIED
o .
v order, this recommendation can restrict these occasions to a minimum, and can also
; enforce a logical rigor conducive to good software engineering practice.
(¥
L ¢
! ° 2. Wherever possible, subprograms should have no side effects. All effects of a subprogram
should be centered on parameters.
&
The principal way that a subprogram can have a side effect is by acting on global variables.
‘6]
¢
L Global variables are generally avoided by modern software engineering practices, and an
: Ada programming style should generally follow this practice.
~ 3. The number of parameters for subprograms should rarely if ever exceed six.
Y

-
)

This is related to recommendation 1 concerning single-action subprograms. If a

T at NP P

P

subprogram genuinely has need of many parameters, it is worth considering whether the

- -

chosen data structures are appropriate. A common possibility is that the several parameters

N
¢

can be collected into a single record type, and passed in as a single parameter. If this is not

A

appropriate it is then worth considering if the action of the subprogram is itself appropriate,

or whether the subprogram is really doing the work of several procedures.

4. Wherever possible, variables should not appear in package specifications. Variables whose life

span must exceed a given subprogram call should lie in package bodies.

-

The presence of variables in specifications is closely related to recommendation 2

concerning the danger of side effects. A variable in a specification is vulnerable to all units

-

-;-;.lll‘)-

that ’with’ the package. The package body is the appropriate location for varjables whose
life span must exceed a given subprogram call, since only the package’s own subprograms

may alter such variables.

5. Constants in package specifications should be replaced by parameterless functions.

23
UNCLASSIFIED

NGRNER UG

e . v rY T ™ .

.'.-.-/..‘x;.’ i

¢
" UNCLASSIFIED
"oy <
B¢
(The presence of a constant in a specification is always subject to the danger that the
P F
"".5 constant will need to be changed and the package recompiled, thus rendering all dependent
Lt}
-yl
Y :.‘ units obsolete. The effect of a visible constant can be gained without this risk by using a
Y
oy parameterless function to return the constant value. The second version below is preferable
¥
! ::.' to the first:
' l.¢
e
bI
[
(.. package Data is
]
"
‘_'.:- Int_Value : constant Integer := 100;
i
’ .
LW
L
T -“
o package Data is
o 2
'_‘_. function Int_Value return Integer
s
:::" The actual integer value is then located in the package body, which can be altered and
AN
7
?‘_i recompiled with no other dependencies involved. Note that any calling program that uses
-
—~ this value does so with precisely the same code for both versions:
N 't
| '\":
Y
"
g))
) with Data;
. procedure Do_Something is
®
s x := Data.Int_Value;
.‘,\
i I.
,l
¥ ,)-
N 6. Wherever possible, avoid subunits.
[]
, Most of the asserted benefits of subunits are imaginary. Though textbook examples of
)
"’ development, where a body is stubbed out and the subunits developed one by one, look
- quite reasonable, experiences by many Ada programmers suggest that such neat sequences
Y
P
.-:'
<.
> 24
” UNCLASSIFIED
®
K,
‘v
)
BN TN A T N RS LN e N ~ w-s'\,-\._, '/.___ -.".v.ﬂ_, ,._, ‘_ v‘-/"*.. .f-.u.(
-w-"'\v / et gt ""*')"' N ')‘ e B "“‘ o :. .0.3'0

Oty ! " " af

. UNCLASSIFIED

of development seldom occur.

\
:
; " This recommendation is potentially controversial, since textbooks generally urge the
S
@ frequent use of subunits. But it is the author’s experience in various Ada projects that
"
3 programmers in large numbers come to avoid subunits except in the most exceptional
1,
: circumstances.
k!
12
® 3.3.2 Other Coding Couventions
Ay
N
N 1. Avoid unnecessary WITH clauses in specifications.
~ It is not uncommon to include a WITH clause in a package specification even if the ‘withed’
q
) unit is not referenced until the body. Except for the predefined units such as Text_IO, this
)
. practice can have unfortunate results. Principally, it will add unnecessary dependencies,
:‘ . which in turn will trigger unnecessary recompilations throughout the development phase. In
; addition, such a practice is a mark of poor engineering standards.
v
” 2. Use USE clauses seldom if at all.
’
® The principal objection to the USE clause is that it obscures the location of declarations
. from the reader of the code. Using USE is not the same as ‘information hiding’: on the
. contrary, USE hides valuable information from a person who might desperately need the
Yol
'.' ~
. information that is hidden.
K There are only two reasons that USE clauses might be justified:

Y .

e To avoid cumbersome code filled with dot-selected identifiers.
« To gain visibility of equality and inequality.

In the first case, it is often a better practice to use package renames, which simplify the

appearance of the code and still allow the reader to locate references. As an example, the

-,-‘,. ‘
£l Wb WSS WS I FAPLPLEL LI SN

25
UNCLASSIFIED

g N A A s A A AR S L L AR S TN

(Y

3
€ (."‘

‘.'

e ¥

--

-

®

ey

LASHAS

i/
D

\ o ~

'::!.’l A .:'l.-' ‘..O,c. l‘l " X

~
Y

o

UNCLASSIFIED

second fragment below is preferable to the first:

with A_Types, B_Types, C_Types;
use A_Types, B_Types, C_Types;
package Data is
var_1 : Color = gray;
var_2 : Shade := Initialize;
var_3 : Hue := Initialize (var_1);
var_4 : Hue := Initialize;

with A_Types, B_Types, C_Types;
package Data is
package A renames A_Types;
package B renames B_Types;
package C renames C_Types;

var_1: A.Color := A gray;
var_2 : B.Shade := B.Initialize;

var_3 : C.Hue := C.Initialize (var_1);
var_4 : C.Hue := B.Initialize;

It is aiso worth noting that the USE version obscures the fact that var_3 and var_4 are

initialized by functions in different packages, a point that is explicit in the second version.

The second reason to adc a USE clause is to gain the visibility of the equality operator. In

such cases, the following are possible alternatives:

If the cquality visibility is needed only once, then the ‘=" notation is not a terrible

inconvenience.

26
UNCLASSIFIED

B e L Dt Al QN

oy L A T LSV TGNCUP RN A4
,‘" 'l' .'A.'n A o' 1' ‘Y"' .f A,w:’: o ""\[\“” . x DRLRIR N

an’n BN),

RN .'

”

Y
||

.

UNCLASSIFIED

- -

with Data_Types;
B package body Something is
package DT renames Data_Types;

] procedure Do_Something is
I o x : DT.AnyKind;
‘ begin

x := Some_Function;

— this is the only time
@ —the “=""is needed
if DT.“=" (x,DT.red) then ...

b. If the visibility is only needed within a single procedure, then the USE clause can also be

located there, as in the following example:

) with Data_Types;
! package body Something is

A procedure Do_Something is
x : Data_Types.AnyKind;

— AnyKind is defined
— in package Data_Types
. use Data_Types;
e — USE clause is in effect
— only within this procedure
begin
x := Some_Function;
3 if x =red then ..

Note also that the USE clause appears only after the declaration of variables: the location

of type ‘AnyKind’ is not hidden by USE.

PP

3. Exceptions should be used only for true run-time error conditions. They should not be used

for recovering from expected conditions.

In most compiler implementations, exceptions have a high overhead. Further, the intended

CRE AR

L use of exceptions in the design of Ada was not to include any message-passing functionality,

27
. UNCLASSIFIED

i W N ‘rr,._..‘-r.' TR A I, ‘1,\.‘,\‘.\"1'?."-“ oy ,\.\‘.-.-,\n.
"..':'l) aulo.l.l'o m?" y" " L

uinuc.. "ll..!l.i -,.n.ln AL LA A AT RS R LA RS SO ROURTL S oLk

AN . L. - ~ - - T P Y VYV Y Y - — —

" UNCLASSIFIED

(but only to provide a means to recover from runtime errors.

et For instance, consider the following:

e function Calculate (x : Integer) return Integer is

R begin . '

Ainely — do some useful computation with x

b return x;

¥ exception

q when Constraint_Error => return 10_000_000;
< - set x to 10_000_000 whenever the

- — computation exceeds Max_Int

KRy end Calculate;

i 3 Code such as this is using the exception handling mechanism of Ada to test boundary
e conditions of the in parameter. This is the type of test that might better be made in the code

M instead, if at all possible:

L function Calculate (x : Integer) return Integer is
"ot subtype Acceptable_Range is Integer range <some acceptable range>;

-~
i begin
. if not (x in Acceptable_Range) then

e return 10_000_000;

else

.. —do some useful computation with x

end if;

return x;
end Calculate;

Uy

vk
(oSl

»
el]

O

7@

3
.
f 3

e e i
<+ {".&f

A

-

“‘.'*.? ®

-

N 28
J UNCLASSIFIED

'.'"f.r.?« o ‘ b A K T P SN S o AT e
'l N NN e J\ Y -"'*' "‘-|" e Mk h. B0, a' Sttt ntintutintintintoain it i iitglane ':t'.!,

UNCLASSIFIED

! 4. SUMMARY

The standards enumerated in this paper are based on lessons learned when COBOL
programmers at the Defense Logistics Agency were making a transition to Ada. There is no
iiitention to cover all possible areas, but rather to focus on the standards most commonly
needed by experienced programmers making such a transi‘ion. These standards should
o therefore be regarded as a starting point, over which a fuller set of agency-wide standards

can be erected. The full complement of DLA software standards can and should be
perceived as being a major contribution by the Ada Prototype Project to the eventual success

of DLA’s Logistics Systems Modernization Plan.

The matter of standards should not be thought of as “elementary,” or an issue for
| : novices only. The need for consistent, sensible standards in modern software engineering is
indisputable. Especially given the riobable scope of projects written in Ada, there can be
little doubt that ad hoc, on-the-spot conventions and standards will be detrimental factors in
l @ any project’s success. From both an engineering and a management viewpoint, the more a

project is bound to a uniform, common-sense set of software standards, the more the
| members of that project are free to focus their energy on the real problems - designs,

. algorithms, optimizations, abstractions - that face software engineering.

"

29
UNCLASSIFIED

- .
¥ .x)_.’-. ",

MO

= A S AN F A B T G R G AL LA
» .Pl.f.f .. SR Wt -(! o)
BRI 84 A A i A A AT Y LN el c........,.. el

w A%

UNCLASSIFIED

o e N A N RN R LR AR PP L g S S i B NEAYS LORA A AN . TRICIAELRY DAAAA .
IR F RIS Ennh .-« LAY] ..x\\\ o ..m.f.n.n.. ‘ ._m. ...,..4‘...,. O RRARRRE ANJ........J.ﬂ..w gassssss @

Pl g & - e e e e

30
UNCLASSIFIED

PELLLLL Tl N ARSE A Y

Sﬁ

TR &;-*.' &)

r_.\-"“- AN
Lu T A

-
o

s

\'

NEARLT

pAA
35 5 S

.- -

e

UNCLASSIFIED

BIBLIOGRAPHY

Gardner, M.R., R.L. Hutchison, & T.P Reagan. “A Portability Study Based on Rehosting

WIS Ada Tools to Several Environments.” McLean, VA: The MITRE Corporation,
1986. Photocopied.

Nissen, J.C.D. & Peter J.L. Wallis. Portability and Style in Ada. Cambridge: Cambridge
University Press, 1984.

SofTech, Inc. ‘“Ada Portability Guidelines.” Waltham, MA: SofTech, Inc., 1984.

Tracz, Will. “Ada Reusability Efforts: A Survey of the State of the Practice.”” Stanford, CA:

Computer Systems Laboratory, Stanford University, 1987. Photocopied.

31
UNCLASSIFIED

TN e L -
e e

A e

A AT N

“n

‘.:c‘.;'r"!“;’h*

LT e L R
.‘-"‘.-’ o .\J‘,'q" » '\."'L*\"‘ >

R T I N e TR Y] ~ N m vy i
A, .r_r. -l'._:‘\.-\\?\vf\)‘-f_'.“\.'.' b T

-‘
~

R

() Distribution List for IDA Paper P-2061

] NAME AND ADDRESS NUMBER OF COPIES
': Sponsor

& Ms. Sally Barnes 2 copies

DLA-ZWS, 3A636
h Cameron Station
D Alexandria, VA 22304-6100

Other

Defense Technical Information Center 2 copies
s Cameron Station
y Alexandria, VA 22314

o Mr. Ken Bowles 1 copy
o TeleSoft

5959 Cornerstone Court West
) San Diego, CA 92121-9891

! Mr. Tim Brass 1 copy
\ Defense Logistics Agency

o 3990 East Broad Street
,'; Columbus, OH 43216-5002

Ms. Tricia Oberndorf 1 copy
Naval Ocean Systems Center

Code 425

X San Diego, CA 92152-5000

CSED Review Panel

- Dr. Dan Alpert, Director 1 copy
. Center for Advanced Study

University of Illinois

912 W. Illinois Street

Urbana, Illinois 61801

Dr. Barry W. Boehm 1 copy
. TRW Defense Systems Group
. MS 2-2304
- One Space Park
) Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy
The Pymatuning Group, Inc.

P 2000 N. 15th Street, Suite 707
Arlington, VA 22201

¢

>

¢
]

AP I T TR BRI S A B Ll i e T A e AT AR P Y
R e e et TR R R R T,

e K M N X N

o

r—y

™ e T a® ama
* - - e ~
.

NAME AND ADDRESS

Dr. Larry E. Druffel

Software Engineering Institute
Shadyside Place

480 South Aiken Av.
Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College

Hanover, NH 03755

Mr. A.J. Jordano

Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.

Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay

302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ

Mr. Philip Major, HQ

Dr. Jack Kramer, CSED

Dr. Robert I. Winner, CSED
Dr. John Salasin, CSED

Ms. Anne Douville, CSED
Mr. Terry Mayfield, CSED
Dr. David Carney, CSED

Ms. Audrey A. Hook, CSED
Mr. Richard Waychoff, CSED
Ms. Katydean Price, CSED
IDA Control & Distribution Vault

-
AT S e
..J'__-“_J'. \."_'. ol

4
Cint M il

P
A " -

NUMBER OF COPIES

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy
1 copy
1 copy
1 copy
1 copy
1 copy
1 copy
2 copies
1 copy
1 copy
2 copies
3 copies [

LN

L L A L N
PN LN ' Pt
(3 L)

ﬁ"\ \"rf‘)"‘f’.{".{" L -~,-
.”."‘("A -A; LG,

